
International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013 1
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Implementing and Testing Performance of
Readers-Writers Problems using Aspect Oriented

Programming
Avinash Chandra Pandey, Dr.S.C.Chand, Deep Shikha Shukla

Abstract— Readers-Writers problem is a classical synchronization problemin the field of computer science.It can easily be implemented
using any object oriented language.However, the implementationof object oriented programming often leads code to be tangled between
functional codes and synchronization codes, which are easy to lead code scattering and code tangling. Aspect-oriented
Programming(AOP)is a programming paradigm which isolates secondary or supporting functions from the main program’s business logic.It
aims to increase modularity by allowing the separation of cross cutting concerns. All AOP implementations have some cross cutting
expressions that encapsulate each concern in one place. With this there is there is minimal or no codes scattering and tangling.This paper
aims to resolve concrete aspect and implement the synchronizationof readers-writers problem based on AOP. The execution time of
AOPand OOP based solutions are measured which shows that AOP can almost get the same execution time as of object-oriented
programming, but with better modularization than OOP.

Index Terms— Aspect Oriented Programming(AOP),AJDT, Code tangling,Eclipse,Lock,Object Oriented Programming, Readers-Writers
Problem,Synchronization.

—————————— ——————————

1 INTRODUCTION
IN the field of computer science, the readers-writers problem
is a classical example of the multi-process synchronization
problem. Synchronization is an important and familiar prob-
lem in the design and development of the software. When
multiple processes or threads access a common critical re-
source, synchronization is required. Here we have to make
sure that the access to data is properly controlled so that no
data loss happens.
 Using OOP for solution leads to code tangling and scatter-
ing.Aspect-Oriented Programming(AOP) was first proposed
in[1] as a programming technique for modularizing concerns
that cross-cut the basic functionality of programs and hence
reduce the limitations with oop solution technique.The pro-
ducer and consumer problem has been solved[3] using AOP.
Though much work has been done over aspect oriented meth-
odology, there is less work on the readers-writers problems
using AOP. As the readers-writers problem is a representative
problem in synchronization, the solution will help in various
areas where synchronization is required.

2 OPP AND AOP

2.1 Object Oriented Programming Solution:
Many object-oriented programming languages have support-
ed the synchronization and can implement the readers-writers

————————————————
 Avinash Chandra Pandey is currently working as Assistant Professor in CS

department of Sri Ramswaroop Memoril University,Lucknow,India,
E-mail: avish.nsit@gmail.com

 Dr.S.Chand is currently working as Professor in CS department of NetajiSub-
has Institute of Technology,New Delhi, E-mailsatish@nsit.ac.in.

 Deep Shikha Shukla is currently working as Assistant Professor in EC depart-
ment of Sri Ramswaroop Memorial University,Lucknow,India,
E-mail:shukla_deepshikha@yahoo.com

problem. For example, java programming implements the

synchronization through the synchronized, as the prefix of the
method, that allows only one thread enters the synchronized
code at the same time and avoid abusing the critical resource.
Java can also control the communication among the thread by
the methods: wait(), notify() or notify. All three methods can
also be called only from within a synchronized method. Alt-
hough conceptually advanced from a computer science per-
spective, the rules for using these methods are actually quite
simple:

 wait(): Tells the calling thread to give up the monitor
and go to sleep until some other thread enters the
same monitor and calls notify().

 notify(): Wakes up the first thread that called wait()
on the same object.

 notifyALL(): Wakes up all the threads that called
wait() on the same object.The highest priority thread
will run first.

2.2 Problem with the Object Oriented Solution:
The implementation of OOP leads the code to be tangled be-
tween the function codes and non-functional codes, which are
easy to lead code-scattering and code tangling. Scattering is
considered when similar code is distributed throughout many
program modules. This differs from a component being used
by many other components since it involves the risk of misuse
at each point and of inconsistencies across all points. Changes
to the implementation may require finding and editing all af-
fected code. Tangling is when two or more concerns are im-
plemented in the same body of code or component, making it
more difficult to understand. Changes to one implementation
may cause unintended changes to other tangled concerns. It is

International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013 2
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

not beneficial for the development and maintainence of the
software.

3 ASPECT ORIENTED PROGRAMMING: A BETTER
SOLUTION

Aspect- Oriented Programming(AOP) was first proposed as a
programming technique for modularizing concerns that cross-
cut the basic functionality of programs.The aim of AOP is to
resolve the code-scattering and code tangling and modularize
the cross cutting concerns.The cross cutting concerns include
security, logging, exception handling and synchronization
etc.Many distinguish work has been done to deal with the dis-
crete aspect. Aspects can contain several entities unavailable to
standard classes. These are:

3.1 Inter-type Declaration:
Allow to add methods, fields etc to existing classes from with-
in the aspect. This example adds an accept Visitor method to
the Point class:

aspectVisitAspect
 {
voidPoint.acceptVisitor(Visitor v)

{v.visit(this); }
 }

3.2 Pointcuts:
Allow to specify join points which are well defined moments
in the execution of a program, like method call, object instan-
tination, variable access etc. For example, this point-cut
matches the execution of any instance method in an object of
type Table whose name begins with ‘you’:

pointcutp set() :execution(* you*(..)) &&this(Table);

3.3 Advice:
Allows to specify code to run at a join point.The action can be
performed before, after, or around the specified join point.eg:

after () : set()
 {
Display.refresh();
 }

4 DESCRIPTION OF READER-WRITER’S PROBLEM
In computer science, the first and second readers-writers prob-
lems are examples of a common computing problem in con-
currency. The two problems deal with situations in which
many threads must access the same shared memory at one
time, some reading and some writing, with the natural con-
straint that no process may access the share for reading or
writing to it(in particular, it is allowed for two or more readers
to access the share at the same time). A readers-writers lock is
a data structure that solves one or more of the readers-writers
problems. We have following two variants of the problem:

4.1 First Reader-Writer’s Problem:
Suppose we have a shared memory area with the constraints
detailed above. It is possible to protect the shared data behind

the mutex, in which case clearly no thread can access the data
at the same time as another writer. However, this solution is
sub-optimal, because it is possible that a reader R1 might have
the lock, and then another reader R2 request access. It would
be foolish for R2 to wait until R1 was done before starting its
own read operation; instead, R2 should start right away. This
is the motivation for the first readers-writers problem, in
which the constraint is added that no reader shall be kept
waiting if the share is currently opened for reading. This is
also called readers-preference.

4.2 Second Reader-Writer’s Problem:
Suppose we have a shared memory area protected by mutex,
as above.This solutional is sub-optimal, because it is possible
that a reader R1 might have the lock, a writer W would be
waiting for the lock and then a reader R2 request access. It
would be foolish for R2 to jump in immediately, ahead of W; if
that happened often enough, W would starve. Instead, W
would start as soon as possible. This is the motivation for the
second readers-writers problem, in which the constraint is
added that no writer, once added to the queue, shall be kept
waiting longer than absolutely necessary. This is also called
writers-preference.

5 EXPERIMENTATION
The execution time is compared between AOP and OOP. In
the experiment we include four threads: two reader threads
and two writer threads. The hardware and software environ-
ment is as following: in the aspect of hardware, the frequency
of CPU is Intel CoreTM 2 Duo T5600 2.00GHz and the capacity
of memory is 4GB. In the aspect of software, operating system
is Windows 7, and the software uses Eclipse 3.6 and AspectJ’s
Eclipse plug-in AJDT (Aspect J Development Tools). We sepa-
rately test the execution time according to the OOP and AOP
implementation. The result of a sample execution time of both
AOP and OOP implemented program is shown in Table 1. As
shown in Table 1, the execution time of AOP is very close to
that of OOP and almost better than it. The execution of OOp is
zero(5000 is the base)sometimes while the execution of AOP is
not zero. Sometimes the execution time of AOP is zero. We
repeatedly executed the program with different number of
Readers and Writers, each time finding that the AOP imple-
mented program was bettering off as compared to the OOP
implemented program.

6 CONCLUSION
The main contribution of this paper is that the reader and
writer problem is implemented using AOP and the execution
time of AOP is compared with that of OOP. The result shows
that AOP is the supplement of OOP.AOP can obtain the sepa-
ration of concerns and make the function parts more reusable
and functional cohesion much better without losing efficiency.

International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013 3
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

TABLE 1

COMPARISON OF OOP AND AOP EXECUTION TIME

 With OOP With AOP
Please Enter integer number=2 Please Enter integer number=2
Please enter readers number=2 Please enter readers number=2
Please Enter writers number=2 Please Enter writers number=2
Reader 0 starts reading 2 Reader 1 starts reading 2
Reader 0 stops reading Reader 1 stops reading
Time taken by Reader:688 Time taken by Reader:197
Writer 1 starts writing.2 Writer 1 starts writing.2
Writer 1 stops writing Writer 1 stops writing
Time taken by Writer:663 Time taken by Writer:510
Reader 1 starts reading 3 Writer 1 starts writing.3
Reder 1 stops reading Writer 1 stops writing
Time taken by Reader:947 Time taken by Writer:1402
Writer 0 starts writing.3 Reader 1 starts reading.4
Writer 0 stops writing Reader 1 stops reading
Time taken by Writer:229 Time taken by Reader:603
Writer 0 starts writing.4 Reader 0 starts reading.4
Writer 0 stops writing Reader 0 stops reading
Time taken by writer:2933 Time taken by Reader:318

REFERENCES

[1] G.Kiczales, J.Lamping, A.Mendhekar, C.Maeda, C.Lopes,

J.M.Loingtier, J.Irwin,” Aspect-Oriented Programming”, in the
proceedings of the 11th European Conference on Object-
Oriented Programming, Finland, Springer-Verlag,1997,pp.220-
242.

[2] Charles Zhang,” FlexSync: An aspect oriented approach to java
synchronization”, 31st International Conference on Software En-
gineering, Vancouver, Canada, May,2009.

[3] Yang Zhang, Jingjun Zhang and Dongwen
Zhang,”Implementing and Testing Producer-Consumer Using
Aspect-Oriented Programming”, 2009,Fifth International Con-
ference on Information Assurance and Security.

[4] G.Kiczales, E.Hilsdale, J.Hugunin, M.Kersten, J.Palm,
W.G.Grisworld,” Getting started with Aspect
J”,Communications of the ACM, 2001, Vol 44,No.10,pp 59-65

